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A relativistic generalization of the Lee model is constructed and solved in the first sector. The solubility is 
achieved with an indefinite metric and a redefinition of antiparticle operators which amounts to a selection 
rule prohibiting pair creation. The renormalization of the F-particle results in three dressed states, one of 
which is a ghost. The properties of these states and their dependence on cutoff and coupling strength are 
discussed. The effects of various modifications of the interaction are analyzed. Thirdly, the N-9 scattering 
problem is solved exactly. 

I. INTRODUCTION 

THIS paper presents another in a growing number 
of model field theories. As in all model theories, 

some of the physical features which are generally at
tributed to "real" theories are changed in order to 
make the model soluble in closed form (at least in 
principle). 

The only real justification for working with a model 
which embodies patently nonphysical features solely 
for expediency is the fact that it can provide an exact 
solution while the real problem is insoluble. I t is well 
known that some interesting qualitative insights into 
certain aspects of real theories can be gained through 
soluble models, but, on the other hand, one can never 
be certain that these insights will not prove to be false 
when (and if) the real theory is solved. The hope of the 
model builder is that this will not happen. 

The axioms usually associated with a physical field 
theory are listed, for example, by Thirring.1 (1) Lorentz 
invariance. (2) Positive energies. (3) Hilbert space and 
probabilistic interpretation. (4) Locality and causality. 
(5) Asymptotic conditions. 

For our purposes, requirements (2) and (3) will be 
dropped; that is, we will construct a model which per
mits negative-energy solutions and possesses an in
definite metric. Our model will be a relativistic extension 
of the Lee model2'3 in which three scalar bosons (called 
V, N, 6) interact via a simple scalar vertex. 

A model similar to this has been examined by 
Gunther4 who chose to treat the V and N particles as 
spinor fields and the 6 as scalar. By doing this, he was 
able to avoid introducing an indefinite metric for the 
V and N (unless ghosts appeared), but once one allows 
an indefinite metric for the 6 particle, there seems to be 
little extra conceptual difficulty in allowing it for all 
three. The simplification achieved by avoiding Dirac 
matrices is considerable. 

Any fully relativistic theory must permit negative-
energy solutions as a consequence of the quadratic 
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energy-momentum relationship. Since we observe anti-
particles in nature we know how to handle these nega
tive-energy solutions in a real theory. But it is the pres
ence of these antiparticles and the possibility of the 
unlimited virtual production of particle-antiparticle 
pairs which makes the real theory insoluble. In any 
perturbation or dispersion calculation, one is forced to 
include an infinite number of intermediate states. Gun-
ther's4 idea was to go back to the idea of a "completely 
empty vacuum'' and eliminate antiparticles. The nega
tive-energy solutions of the field equations are retained, 
but now they represent particles with negative energy 
in order to make the formalism consistent, states with 
negative norm. See Sec. II-A for more detail. 

In this paper we will consider only the first sector, 
i.e., one V particle or an N-6 pair. We begin with a 
Lagrangian made up of an <£o which is similar to the 
Lagrangian for three noninteracting charged scalar 
fields. We add to this a local \<p3 interaction. We are 
able to obtain exact solutions to the F-particle mass and 
charge renormalization and the N-6 scattering problem. 

For the local interaction we find three renormalized 
F-particle states whereas only two bare V particles are 
postulated. The third root is shown to be a ghost state 
with a negative norm. This ghost exists for all values 
of the coupling constant and even with a cutoff. I t is 
then demonstrated that both the ghost and the neces
sity for a cutoff can be eliminated by making the inter
action nonlocal in a particular way. For this nonlocal 
interaction there is a wide range of coupling constant 
for which no ghosts appear. 

Finally, the N-6 scattering problem is solved and the 
analytic properties of the S matrix exhibited. 

II. NOTATION AND HAMILTONIAN 

This model will consist of three non-Hermitian scalar 
fields which we call V, N, 6, after Lee. The only inter
action in the theory is 

-N+6 (2.1) 

and the simplest local interaction Hamiltonian we can 
write for this is 

Hi = * . / * x(V*(x)N(x)<t>(x)+U.c.), (2.2) 
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where we have chosen to write Hi in the Schrodinger 
picture. The free fields must satisfy the Klein-Gordon 
equation. This is ensured by writing the free Lagrangian 
in the standard charged scalar form5 

£oe(x)= :dx**(x)dV(x)~/*V*(x)*(x). (2.3) 

Equation (2.3) is written for the 6 field and similar 
expressions are to be included for the V and N fields. 

Now in a realistic field theory we would Fourier 
expand the field operators as follows: 

* ( * ) = WJkn 
-[a(k)er«-*+6*(k)6+**-*], 

(212)1/27,0>0co(k) 

where 0 = (2TT)Z and a(k) destroys a particle and Z>*(k) 
creates an antiparticle. In our field theory we use the 
expansion 

4>(x) = (-) fd*kd(k2-fn2)a(k)e-ik-x, (2.4) 

where the integral is over positive and negative energies. 
We require that tf_(k) be a destruction operator, i.e., 
that 

<z_(k)|0> = 0. (2.5) 

The expansion (2.4) can be reduced to ( e = ± ) . 

1 r d*k 

(212)i/2 A 0 > 0 W (k ) 
(2.6) 

But we want to ensure that the theory is still causal, 
that is, we want to retain the commutation relation: 

where 
0 ( x ) , < K x ' ) ] = - ^ ( x - x ' ) , 

dt U 

(2.7) 

(2.8) 

If (2.6) is substituted into (2.7), it is found that the 
commutation rules of the momentum-space operators 
must be 

[a.(k) ,a . .*(k ' )]= eco(k)8e6 '53(k-k'), 

co(k) = + (k2+M
2)1 / 2 , 

(2.9) 

in order for (2.7) to be satisfied. 
If operators of the form (2.6) are substituted into 

(2.2) it is easily seen that only combinations of the form 
v^n^av and n^av^ve can occur.6 In other words, we 
have satisfied the selection rule (2.1). But now we must 
live with the fact that the commutators (2.9) are 
abnormal. This abnormality results in states of negative 
norm. For example, a state containing a single negative 
energy 6 particle of momentum k has the norm: 

(^_(k) |^(k))=(Ola_(k)a_(k)IO)=-co(k)53(0) . 

5 See, e.g., S. S. Schweber, Relativistic Quantum Field Theory 
(Row-Peterson and Company, New York, 1961), pp. 195fL 

6 The lower case letters, v, n, and a will denote momentum-
space operators as opposed to the capital letters in coordinate 
space. 

Methods for handling indefinite metrices have been 
discussed extensively by Nagy7 and we will not go into 
them here. We will not introduce the so-called rj 
formalism but will stick to the operators ae*, a€ and 
accept the fact that the eigenstates of the Hamiltonian 
do not span a Hilbert space. However, we will assume 
that they form a complete set and that no states of zero 
norm (dipole ghosts) can appear. As we will see later 
this will necessitate the introduction of cutoffs. 

Starting with the Lagrangian (2.3) one derives the 
free Hamiltonian Ho and when the expansions (2.6) 
are inserted it is easily shown that 

# c 
- / 

d*k 
I > ( k K * ( k K ( k ) , (2.io) 

with similar expressions holding for the V and N. We 
begin then with the Hamiltonian8 

H=Ho9+Hov+HoN+Hr, 

where the momentum-space representation of Hi is 
found by combining (2.2) and (2.6). 

III. PHYSICAL V PARTICLE 

We may now use the Hamiltonian just described to 
determine the properties of the physical F-particle 
state. We first expand the physical state in terms of the 
bare states and specify that the V particle is in its rest 
frame: 

i n o ) > = L C ( € ) | 7 . ( o ) > 0 

+} ̂i\r(q)a>0(q) 
Z$vAq)\Nv(q)eA-CL)%. (3.1) 

This will be recognized as a generalization of the tech
nique employed by Kallen and Pauli3 in their original 
treatment of the Lee model. We now require 

H\V(0)) = mv\V(0)), (3.2) 

where my can be either positive or negative. 
The eigenvalue problem (3.2) leads to the following 

set of two equations: 

mvC(ef)=efmoC(ef) 

J 
fflq 

2 > / $ ^ ( g ) , (3.3) 
(80)1/2Wo J 00N&6 v>v' 

mY§w> (q) = (war (q) + v'<*% ( q ) ) $ V (q) 

+ - ^ - E € / C ( e / ) . (3.4) 
(812)1'2 «' 

To these equations we add the requirement that the 

7 K. L. Nagy, Nuovo Cimento Suppl. 17, 92 (1960). 
8 In Ho(V) we use the bare mass of the free V particle (mo). 

We save the symbol mv to denote the renormalized mass. 
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state be normalized: 

<F(0) |F(0)) = mF63(0). 

This leads to9 

(3.5) 

mv=m0'22 eC2(e)+ 
/ 

<Pq 
Y, vV'$vS{q). (3.6) 

COi\rCO0 v,] 

The mass renormalization is now obtained as follows: 
In Eq. (3.3) we notice that the integral term is in
dependent of e'. Using this fact we can write (3.3) for 
both e' = zk and add and subtract the two resulting 
equations. The subtraction leads to the equation 

my 
E C ( e ' ) = - I e ' C ( e ' ) . 
«' mo «' 

The addition leads to 

% E C ( e ' ) - « o E / C ( f ' ) 

' 2go f #q 

(3.7) 

(8fi)1/2OT0 J 
T,vv'$,Aq)- (3-8) 

co NO) e' 

Now using (3.4) one solves for $PP>(q) in terms of 
£ €'C(e') and inserts this and (3.7) into (3.8). The 
result is an equation from which the quantity ^ e'C(e') 
cancels out leaving a relation which must be satisfied 
by the masses 

where 

F(mv) = 

mv2~m{?=2QrlgQ2F(mv), 

q vv 

/ 8a)nr00d v>v' My— VOltf— V 00$ 

(3.9) 

(3.10) 

The sum in (3.10) can be evaluated and the resulting 
integral 

F(mv) 

-my I 
fflq 

[mv
2— (co2\r+co<02][>F

2— (o)N—co0)
2] 

(3.H) 

is linearly divergent. The apparent co4 dependence in 
the denominator does not hold up because cojy—-coe 
approaches a constant as q goes to infinity. 

In order to solve (3.9) for my we must evaluate 
F(nty). For this purpose it is easiest to take mN=md=fi. 
Then co^—co0 = O for all q and F(my) simplifies to10 

F(mv)--
4TT /•«« q2d 

my J o 4co2— 

q2dq 

My2 
(3.12) 

9 We have assumed the Ce(e') and <Kg,eO to be real. It is not 
difficult to show that if mv is real, then ImCe(e')=0 implies 
Im<t>PV'(q,€)=0. Therefore, in the following, whenever we use Eq. 
(2.16) we assume mv real and adjust the phase so that C(e) and 
0 are real. 

10 In using a step function cutoff we have not been careful about 
keeping Lorentz invariance. In the rest system of the V particle 
the volume in momentum space is spherical but in other frames 
it is distorted. For the purpose of this paper this is not an important 
consideration. 

FIG. 1. Solution of Eq. (2.24) for the three "physical" V-
particle states. qm is the cutoff momentum and is assumed to be 
fixed while /o is varied. 

(Note that F{my) is negative.) This is a straightforward 
integral and the result is (assuming ^m^>2/x) 

Therefore, 

where 

F(my)~—Trqm/?nv. 

2TT g0
2gm 

12 my 

Jo2 qm 
= mo2— . 

7T my 

/ 0 2 = ( l / W o 2 ) ( g o 2 / 4 7 r ) . 

(3.13) 

(3.14) 

(3.15) 

Equation (3.14) is a cubic and the roots can be 
located approximately by graphical means as shown in 
Fig. 1. There is always one real root with negative mass 
{and therefore negative norm [Eq. (3.5)]} and this 
root is always below —mo. The other two roots can be 
real or complex depending on the size of the coupling 
constant. 

The appearance of three bound states where we would 
only expect two (i.e., the renormalized v+ and vJ) is an 
interesting feature of this model. The' most important 
consequence of this extra root is the fact that the free 
theory cannot be obtained as the uniform limit of the 
interacting theory as /o—>0. However, in a certain 
sense the extra state does "disappear" in this limit as 
one can see by examining the charge renormalization, 
which we now consider. 

We define the charge renormalization T by referring 
to Eq. (3.4). The effective coupling constant is evidently 
g=g<F, where 

T ^ E c C C e ) . (3.16) 
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The sum in (3.16) is evaluated by combining (3.3), 
(3.4), and (3.6) and the result is (for real my) 

T fo2w0
2 nmqHq vv T"1 

r2= i+- — E - — .(3.17) 
L 4ir my J o o)2 v)V

f (mv—voi—v oifJ 

The summation and integral can be worked out ex
plicitly, and if we assume that the linearly divergent 
term dominates, we find 

r 8/0
2 W [q™ q*dq "p1 

L w mv*J0 (wF
2-4co2)2J 

The divergent part of the integral is simply #m/4 and 
we have 

r /o2 m^qnTT1 

r2 = | 1-- —\ . (3.18) 
r Jo2 m0

2qm'T1 

L 2TT m F
3 J 2T my* 

Using (3.14) to substitute for mo2qm and letting 
a = fo2T~1, we get 

2mv
2 

Y2{mv)= . (3.19) 
3 W 7 2 ~ W o 2 

Therefore, for each root my, there is a different value 
of the charge renormalization, and T2 is real and positive 
as long as my is not in the range 0<my<mo/y/3. If 
T2 is negative for some my, then this root is a ghost 
state in the sense defined by Kallen and Pauli.11 

We are now able to return to the three roots shown in 
Fig. 1 and discuss their properties. The root my1 has 
negative mass and therefore negative norm. In the 
limit a—»0 it approaches —mo and from (3.19) we 
see that T(my^) is real and less than 1; the latter 
showing that the effective coupling of this state is 
reduced by the presence of the interaction. 

The roots my2 and myz approach 0 and + % re
spectively, as a - ^ 0 and both have positive norm 
according to Eq. (3.5). An inspection of the hyperbola 
—aqmmy~l shows that the root my2 is always greater 
than aqm (as long as my2 is real) and the difference 
nty2—aqm looks to be of second order in a. These obser
vations can be verified by solving the cubic equation 
(3.14) analytically. We also note that as a is increased 
a value will be reached at which the hyperbola and 
parabola are just tangent at a single point. This point 
marks the transition of my2 and mY% from real to com
plex, and it can be shown that at this "critical point" 
(the dipole ghost solution) 

^ F c r i t = •%oiqn = w 0 /v3 . (3.20) 

Therefore, if my% is real, it must be greater than 
mo/y/S and is not a ghost. But T (myz) is then real and 
greater than one. So the effective coupling constant of 

FIG. 2. Solution for model with w'— \, There are two physical 
V particles and the renormalization is finite. 

this root is enhanced by the interaction. This is an 
effect which should not occur in a realistic field theory. 

Now consider my2. I t is always a ghost state and in 
the limit a —> 0 we find T3(my2) —» 0. I t is in this sense 
that we can say that the root my2 disappears in the no 
coupling limit. Its wave function is renormalized to 
zero by T(my2) in this limit.12 

Finally, we examine the behavior of the roots as a 
becomes large (strong coupling). Nothing special hap
pens to mVl as it simply moves farther to the left. On 
the other hand, my2 and myz become complex. For 
aqm^mo we find that my2=my* and 

my2 

where 

1/3/32+1\ *v3/3/32-l> 

2\ 3(3 ) 2 \ 30 / 
(3.21) 

P=(aqm/m0)
1/s. 

For completeness we also give myt in this limit: 

w F l « - [ ( 3 0 + l ) / 3 £ ] . (3.22) 

Note that my2+myz= —myv This is a general result 
independent of the coupling strength and comes from 
the fact that the quadratic term in the cubic equation 
(3.14) is missing. I t is also amusing to note that in the 
limit of large coupling, the three roots form the vertices 
of an equilateral triangle in the energy plane. 

In the preceding discussion we have never specified 
the location of the threshold of the physical N-d 
spectrum, except for the tacit assumption that mo<2jj,. 
We now notice that all of our results are independent of 

11 If r 2 < 0 for some mv our assumption in footnote 9 is not valid. 12 In the more general case, where mN^me and we let m^—m^ 
States of this type must be treated in the way Kallen and Paulin =A, the hyperbola is asymptotic to the line WF = A rather than 
treated their ghost state, i.e., an additional indefinite metric must mv = 0. In this case if a is decreased to zero mv2 —> +Q. The result 
be introduced. r (mv2) —> 0 still holds. 
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\x as long as qm^>2fj>, which can always be satisfied since 
both a and qm are adjustable. But we have kept only 
the leading terms in the integrals of Eqs. (3.12) and 
(3.17). The convergent parts do depend on JX and by 
examining these we find that if Wr>2/i (or nty< — 2/z), 
the integrals have small convergent imaginary parts. 
These solutions are then to be interpreted as N-6 
scattering resonances with the position of the resonance 
determined primarily by aqm and the width determined 
primarily by a and n. In general, we would expect the 
widths of mv2 and my% to be considerably greater than 
that of ntvu since the former leave the real axis even 
before the threshold is reached. 

Before closing this section, we consider briefly three 
modifications of the Hamiltonian which lead to different 
sets of roots. We can write the interaction in momentum 
space by combining Eq. (2.2) with the expansion of 
(2.6) of the field operators. The result is 

go C (rp C d6q r d*k 

(8ft)1 '2 J po J q<> J k0 

-k) 

x Z *>e*(p>M(<iKCk) 

+Hermit ian conjugate. (3.23) 

We know that Hi is local from (2.2). I t can be made 
nonlocal by dropping terms from the summation over 
energy indices and we wish to point out three of the 
ways in which this can be done. 

(1) Keep only terms in which fjLv=-\-l. This elimi
nates the N+0- and NS+ states and removes the center 
cut in the energy plane. 

(2) Keep only terms in which e = fjLv. This is a "con
servation of norm" selection rule and it eliminates 
mixing of v+ and V- states. 

(3) Keep only terms in which e = fx=v. This com
pletely uncouples the positive and negative energy 
regimes and is equivalent to two Lee models side by 
side. 

The most interesting of these three modifications is 
the first. I t leads to the set of two solutions illustrated 
in Fig. 2 and has the added virtue of being convergent. 
The masses my1 and my2 are the roots of the equation 

fo2m0
2iJi[ 

2mv 
1 — ) - l ] (3.24, 

and the charge renormalization is given by 

which, with the help of (3.24) can be reduced to 

/ mv
2Vl2r/ mF

2 \1 / 2 1 / Wo2 XT"1 

\ 4u2/ L\ 4u2/ 2\ mv
2/J 

FIG. 3. Graph of Eq. (2.36) showing values of \my\ (shaded 
region) for which T2(mv) <0 . 

In order to find the value of my at which T2 becomes 
negative we plot in Fig. 3 the two terms in the square 
brackets of (3.26). In the shaded region T2 is negative. 
Since one term depends only on the threshold 4ju2 and 
the other only on wo, these two parameters can be 
varied independently as long as wo<2/x. Also note that 
(3.26) contains only my2 which allows us to plot just 
the absolute value of my. 

In this modified model the extra root does not appear 
and both the v+ and V- particles are renormalized to 
lower masses. The coupling constant of my1 is increased 
and that of my2 decreased by the interaction. 

The removal of theN+6- and N-6+ states has therefore 
changed a divergent model to a convergent one. An 
examination of the second of the models listed above 
confirms the expectation that these N-6 states are 
responsible for the divergence. Model 2 leads to a finite 
renormalization for the v+ which couples to the N+6+ 
and N-B-. and an infinite renormalization for the ZL_ 
which couples to the JV+0_ and NS+. Finally, model 3 
gives infinite renormalizations for both V particles 
because only one of the N+0+ or N-6- couples to each 
of the two energy states of the V. 

IV. N-Q SCATTERING 

By applying the above techniques to the N-6 scat
tering problem we can obtain the exact physical eigen-
states and from these the S matrix. The physical N-6 
state is expanded in terms of the bare states as follows: 

| i V , ( q ) ^ ( - q ) ) = | ^ ( q ) ^ ( - q ) ) o 

+ /
a°q 

—7-7 E ^„ / n (q ,qO| iW)^-q ' )>o 
CON o)e /*»**' 

+£/Wn(q)|F e(0))0 , (4.1) 

where we have already specified the center-of-mass 
system and where " in" on the physical state has the 
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2Z85E& 3@ i 

*V*0 

E PLANE 

@v? <sft szz 
Mo ^ M . 

FIG. 4. Singularities of iV-0 scattering 5 matrix. We have 
taken mNT^me to exhibit the center cut. 

usual meaning of incoming plane waves at / = — <*> and 
only outgoing scattered waves at t = + °o. 

Solving the eigenvalue problem, 

F | ^ ( q ) ^ ( - q ) ) = ^ ( q ) | ^ ( q ) ^ ( - q ) ) ? (4.2) 

we get 
go 

(q,qO = — — E 4 W n ( Q ) 
(80)1/2 

X ( i w ( q ) - i w ( q ' ) + * r ) - 1 , (4.3) 

/ W n ( q ) = 

[• 

go^ 

X 

where 

(EPV(q)+ir)2-m0
2- (2g0

2/tt)F(E+ir) 

Evv> (q) = vuN (q)+v'<a$ ( q ) , 

] • 
(4.4) 

(4.5) 

and F(E+ir) is given by (3.10) with the substitution 
niv—> Evv+ir. 

The 5 matrix is calculated from 

5 / 4 -=out( iV,(q)^(-q) | iV A t (q / )^(-q , ) ) in (4.6) 

and with the aid of (4.1), (4.3), and (4.4) this is found 
to be 

5/»=coiv(q)co0(q)^/5^5^^63(q—qO —2xi54 

g o W - i 
X(pf-pi) 

Ev
2-m,2+ (2gQ

2/Q)F(E+ir) 
. (4.7) 

The denominator of the second term is of course the 
eigenvalue equation [cf. Eq. (3.14)] for the physical 
F-particle masses. Therefore, the S matrix has poles 
at each of these masses. I t is also clear that the singular 

integral leads to the cuts shown in Fig. 4. Note added in 
proof. The cut structure of Fig. 4 is very suggestive of 
the cut structure obtained by Frautschi and Walecka 
[S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 
1486 (I960)] f ° r pion-nucleon scattering. However, the 
comparison of this model with theirs is not a fruitful 
one. Because of the indefinite metric in our model, the 
signs of the discontinuities across the cuts are changed 
and completely different results are obtained. 

The three poles of the S matrix can be exhibited more 
clearly by expanding the second term in partial frac
tions. As long as E does not lie on any of the cuts we 
can write: 

go2(4a)-i , N 

Tfi= . (4.8) 

E2—m0
2+ (aqmm0

2/E) 

If the denominator is written 

aqmmQ
2 1 

E2—w0
2H =~(E—mi)(E—m2)(E—mz), 

E E 
then we have the relations 

m i + w 2 + m 3 = 0 , 

WiW2+W 2W3+WiW 3=— Wo2, (4.9) 

WiW 2 w 3 = —aqmmo2. 

By expanding (4.8) in partial fractions and using (4.9), 
one can show that 

l 3 g0
2r2K-) E 

4fii=l Mi2 E—Mi 
(4.10) 

The dimensionless renormalized coupling constant is, 
therefore, 

2 _ 1 go2T2(mi) 
gi — • - , 

4 0 m{
2 

where T2(mi) is defined by (3.19). 

V. PERTURBATION THEORY AND 
RENORMALIZATION 

In view of the fact that we have an exactly soluble 
theory, it is interesting to compare the exact results 
with those which would be obtained with a standard 
application of perturbation theory. In particular, we 
will consider the physical F-particle propagator and its 
mass renormalization. 

The inapplicability of standard renormalization tech
niques becomes evident at the outset. Ordinarily, the 
first step is to replace the m0

2 term in H0 by my2 and 
then subtract dm2 from Hi. But in doing this we im
plicitly assume that the renormalized (i.e., dressed) 
V particle is a solution of the Klein-Gordon equation: 

(n+mv
2)V(x) = 0. (5.1) 

Evidently such an assumption is in conflict with the 
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v X ^v v 

FIG. 5. Mass renormalization bubble diagram. 

results of the previous sections, which gave three 
dressed F-particle states and an asymmetric mass shift. 

However, suppose that we were to ignore the above 
objection and perform the usual mass renormalization 
anyway. We can transform Hi to the interaction picture 
and reduce the S matrix to a set of Feynman graphs as 
usual. Then we can calculate 8m2 to second order in go 
by evaluating the bubble diagram of Fig. 5. 

The rules for Feynman diagrams are very similar to 
those for charged scalar mesons except for the following 
two differences: 

(1) There will be factors of € = ± 1 which accompany 
external lines of positive and negative energies. 
(2) If one evaluates the contractions between field 
operators which appear in the Wick13 reduction it turns 
out that they are proportional to the retarded propa
gators rather than the Feynman propagators. This 
occurs because in the diagram both positive- and 
negative-energy particles move forward in time instead 
of the usual situation where antiparticles move back
ward in time. 

In second-order perturbation theory, this behavior 
results in the lack of any mass renormalization diagrams 
for the N and 6 particles and in the absence of vacuum 
fluctuation diagrams. This, of course, is the intended 
behavior, and it is quite instructive to see just how it is 
tied up with the use of retarded instead of Feynman 
propagators. 

Using these rules one can write out the amplitude of 
Fig. 5 and after some algebraic manipulation it is found 
that 8m2 must satisfy Eq. (3.9), i.e., 

8 m2 = — aqmm o2/m y-. (3. 9a) 

So we can still get the correct answer if we interpret 
(3.9a) as a cubic equation for my. 

This equivalence of the perturbation and exact solu
tions is a consequence of the extreme simplicity of our 
model. In a slightly more complicated model in which 
diagrams such as Fig. 6 can occur, one would not expect 
this equivalence. 

We would like to be able to conclude this section by 
writing the Hamiltonian in completely renormalized 

^lL 25L N 
FIG. 6. Two meson renormalizations which cannot 

occur in our simple model. 
13 G. C. Wick, Phys. Rev. 80, 268 (1950). 

form. However, as yet we have not been able to ac
complish this, because of an inability to define a satis
factory renormalized F-particle operator and the com
mutation rules it must satisfy. If such an operator 
(actually a set of three operators) can be constructed it 
will certainly be nonlocal in character. I t is possible that 
such operators can be constructed with the "dress
ing transformation" techniques of Greenberg and 
Schweber,14 but we have no answer to this at this time. 

VI. CONCLUSION 

We have analyzed an exactly soluble relativistic 
model field theory. The model was made soluble in 
closed form by the elimination of antiparticles, which in 
turn required the use of an indefinite metric and the in
troduction of negative-energy particles. Except for one 
minor deviation (the cutoff procedure), relativistic 
invariance has been maintained throughout. 

The most interesting feature of this model is the ap
pearance of an extra root of the mass renormalization 
equation. For small coupling this extra state has very 
small mass and is a ghost state. For large coupling it 
joins with another root to form a complex doublet 
with equal absolute masses. In the limit of very strong 
coupling the three roots form a triplet of states all 
having the same absolute mass. 

The mass renormalization is divergent. The diverg
ence was shown to be removed if the interaction was 
constructed so as to forbid N+6- and N-6+ intermediate 
states. I t was also shown that these states are re
sponsible for the extra root in the eigenvalue problem. 
This result provides a direct link between the divergence 
of the mass renormalization and the point nature of 
the interaction, which is not surprising. However, it is 
of some interest that the presence of the extra root is 
also tied up with locality. 

We have discussed this model entirely from the view 
point of Lagrangian formalism. However, many of the 
features of this model are quite similar to those of a 
model constructed by Zachariasen,15 based entirely on 
dispersion relations and unitarity. Although our model 
is not equivalent to Zachariasen's, it provides a good 
deal of insight into the connection between Lagrangian 
theories and S-matrix theories. We plan to discuss this 
connection in detail in a subsequent paper. 
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